RAMAKRISHNA MISSION VIDYAMANDIRA (Residential Autonomous College under University of Calcutta) **FIRST YEAR**

B.A./B.Sc. SECOND SEMESTER (January – June) 2015 r Examination Ma Mid So

	Mid-Semester Examination, March 2015		
Date : 21/03/202	15 MATH FOR ECO (General)		
Time : 12 noon –	1 pm Paper : II	Full Marks : 25	
[Use a separate answer book for each group]			
<u>Group – A</u>			
1. Answer an	<u>ly two</u> :	[2×2]	
a) State R	colle's theorem.	[2]	
b) Prove t	that $\sin 46^{\circ} \sim \frac{1}{2}\sqrt{2}\left(1 + \frac{\pi}{180}\right)$.	[2]	
c) If $y = c$	$\cos(m\sin^{-1} x)$ then, find y_n for $x = 0$.	[2]	
2. Answer <u>an</u>	iy one :	[1×3]	
a) Interpr	et Cauchy's Mean Value Theorem geometrically.	[3]	
b) Deduce	e Lagrange's M.V.T from Rolle's theorem.	[3]	
3. Answer <u>an</u>	y one:	[1×5]	
a) Using	M.V.T prove that : $\frac{\pi}{6} + \frac{\sqrt{3}}{15} < \sin^{-1}\left(\frac{3}{5}\right) < \frac{\pi}{6} + \frac{1}{8}$	[5]	
b) If $u_n =$	$= D^{n}(x^{n} \log x)$, show that $u_{n} = nu_{n-1} + (n-1)!$.		
Hence,	show that $u_n = n! \left(\log x + 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \right).$	[2+3]	
<u>Group – B</u>			

4. Answer any one :

5.

Answer any one :		
a)	S is the set of all 2×2 real symmetric matrices. Prove that S is a subspace of the vector space $\mathbb{R}_{2\times 2}$ of all 2 nd order real matrices.	[3]
b)	Let $\{\alpha, \beta, \gamma\}$ be a basis of a real vector space V and c be a nonzero real number. Prove that	
	$\{\alpha + c\beta, \beta, \gamma\}$ is a basis of V.	[3]
Answer <u>any two</u> :		[2×5]
a)	Prove that the intersection of two subspaces of a vector space V over a field F is a subspace of V. Is the union of two subspace of V over F is a subspace? Justify your answer.	[3+2]
b)	State the Replacement Theorem. Use it to find a basis for the vector space \mathbb{R}^3 that contains the vectors (1,2,0) and (1,3,1).	[1+4]
c)	Find a basis and dimension of the subspace S of \mathbb{R}^3 defined by	
	$S = \{(x, y, z) \in \mathbb{R}^3 : x + 2y = z, 2x + 3z = y\}.$	[4+1]

_____ × _____